skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Gavva, Surya Teja"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In the Continuous Steiner Tree problem (CST), we are given as input a set of points (called terminals) in a metric space and ask for the minimum-cost tree connecting them. Additional points (called Steiner points) from the metric space can be introduced as nodes in the solution. In the Discrete Steiner Tree problem (DST), we are given in addition to the terminals, a set of facilities, and any solution tree connecting the terminals can only contain the Steiner points from this set of facilities. Trevisan [SICOMP'00] showed that CST and DST are APX-hard when the input lies in the $$\ell_1$$-metric (and Hamming metric). Chleb\'ik and Chleb\'ikov\'a [TCS'08] showed that DST is NP-hard to approximate to factor of $$96/95\approx 1.01$$ in the graph metric (and consequently $$\ell_\infty$$-metric). Prior to this work, it was unclear if CST and DST are APX-hard in essentially every other popular metric. In this work, we prove that DST is APX-hard in every $$\ell_p$$-metric. We also prove that CST is APX-hard in the $$\ell_{\infty}$$-metric. Finally, we relate CST and DST, showing a general reduction from CST to DST in $$\ell_p$$-metrics. Comment: Abstract shortened. Journal version for TheoretiCS 
    more » « less
    Free, publicly-accessible full text available January 20, 2026